Word Automaticity of Tree Automatic Scattered Linear Orderings Is Decidable

نویسنده

  • Martin Huschenbett
چکیده

A tree automatic structure is a structure whose domain can be encoded by a regular tree language such that each relation is recognisable by a finite automaton processing tuples of trees synchronously. Words can be regarded as specific simple trees and a structure is word automatic if it is encodable using only these trees. The question naturally arises whether a given tree automatic structure is already word automatic. We prove that this problem is decidable for tree automatic scattered linear orderings. Moreover, we show that in case of a positive answer a word automatic presentation is computable from the tree automatic presentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree Automata and Automata on Linear Orderings

We show that the inclusion problem is decidable for rational languages of words indexed by scattered countable linear orderings. The method leans on a reduction to the decidability of the monadic second order theory of the infinite binary tree [9]. Mathematics Subject Classification. 68Q45, 03D05.

متن کامل

Isomorphisms of scattered automatic linear orders

We prove that the isomorphism of scattered tree automatic linear orders as well as the existence of automorphisms of scattered word automatic linear orders are undecidable. For the existence of automatic automorphisms of word automatic linear orders, we determine the exact level of undecidability in the arithmetical hierarchy.

متن کامل

Scattered Context-Free Linear Orderings

We show that it is decidable in exponential time whether the lexicographic ordering of a context-free language is scattered, or a wellordering.

متن کامل

Two-Variable Logic over Countable Linear Orderings

We study the class of languages of finitely-labelled countable linear orderings definable in twovariable first-order logic. We give a number of characterisations, in particular an algebraic one in terms of circle monoids, using equations. This generalises the corresponding characterisation, namely variety DA, over finite words to the countable case. A corollary is that the membership in this cl...

متن کامل

Collapsible Pushdown Graphs of Level 2 are Tree-Automatic

We show that graphs generated by collapsible pushdown systems of level 2 are tree-automatic. Even if we allow ε-contractions and reachability predicates (with regular constraints) for pairs of configurations, the structures remain tree-automatic whence their first-order logic theories are decidable. As a corollary we obtain the tree-automaticity of the second level of the Caucal-hierarchy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012